Pharmacogenetics studies the genetic basis of an individual’s ability to metabolize or respond to pharmacotherapy (Steimer, Muller, Leucht, & Kissling, 2001).

Adverse drug reactions have an incidence of 2.2 million cases a year (Steimer & Potter, 2002).

Drug response can be improved through drug selection, adjustment and dosing based on information from genetic testing results (Mills & Haga, 2014).

The cytochrome P450 or CYP2D6 enzymes metabolize about 70-80% of all phase-I-dependent metabolism and 40-45% of all marketed drugs (Laika, Leucht, Heres, & Steimer, 2009).

The use of pharmacogenomics testing delivers an innovative strategy to improve the selection of psychotropic medication vs. the increased side effects (Mrazeck, 2010).

The primary diagnosis was anxiety disorder at 56% (GT = 32), (NT= 24).

Although, the project objectives were not met, improvements of clinical significance were achieved.

The BASIS showed that 40% of those with GT and 34% NT demonstrated a decrease in their baseline basis after treatment.

The PHQ9 also showed a change between the GT at 39% and those NT at 35%.

There was also clinical significance in the week’s progress seen in, with Φ .30 which is a moderate clinical improvement.

PTSD patients have difficulty achieving efficacy.

REFERENCES


ACKNOWLEDGEMENTS

The project director would like to thank Dr. Nancy Birtley (University Committee Chair), Dr. Jane Bostick (University Committee member); Dr Amit Gupta (Site Committee Chair); Dr. Lindsey Leskanich (Site Committee Chair).

Email: jil@umissouri.edu

URL: http://nursing.missouri.edu/index.php